Een binomiale willekeurige variabele biedt een belangrijk voorbeeld van een discrete willekeurige variabele. De binomiale verdeling, die de waarschijnlijkheid voor elke waarde van onze willekeurige variabele beschrijft, kan volledig worden bepaald door de twee parameters: n en p. Hier n is het aantal onafhankelijke proeven en p is de constante kans op succes in elke proef. De onderstaande tabellen bieden binomiale kansen voor n = 7,8 en 9. De kansen in elk worden afgerond op drie decimalen.
Moet een binomiale verdeling worden gebruikt ?. Voordat we naar binnen springen om deze tabel te gebruiken, moeten we controleren of aan de volgende voorwaarden is voldaan:
Wanneer aan deze vier voorwaarden is voldaan, geeft de binomiale verdeling de waarschijnlijkheid van r successen in een experiment met in totaal n onafhankelijke proeven, elk met kans op succes p. De kansen in de tabel worden berekend met de formule C(n, r)pr(1 - p)n - r waar C(n, r) is de formule voor combinaties. Er zijn afzonderlijke tabellen voor elke waarde van n. Elk item in de tabel is geordend op de waarden van p en van r.
Voor andere binomiale distributietabellen hebben we n = 2 tot 6, n = 10 tot 11. Wanneer de waarden van np en n(1 - p) beide groter zijn dan of gelijk zijn aan 10, kunnen we de normale benadering van de binomiale verdeling gebruiken. Dit geeft ons een goede benadering van onze waarschijnlijkheden en vereist geen berekening van binomiale coëfficiënten. Dit biedt een groot voordeel omdat deze binomiale berekeningen behoorlijk ingewikkeld kunnen zijn.
Genetica heeft veel connecties met waarschijnlijkheid. We zullen er een bekijken om het gebruik van de binomiale verdeling te illustreren. Stel dat we weten dat de kans dat een nageslacht twee exemplaren van een recessief gen erft (en dus de recessieve eigenschap bezit die we bestuderen) 1/4 is.
Verder willen we de kans berekenen dat een bepaald aantal kinderen in een gezin met acht leden deze eigenschap bezit. Laat X wees het aantal kinderen met deze eigenschap. We kijken naar de tafel voor n = 8 en de kolom met p = 0,25 en zie het volgende:
.100
.267.311.208.087.023.004
Dit betekent voor ons voorbeeld dat
n = 7
p | .01 | .05 | .10 | .15 | .20 | .25 | .30 | .35 | .40 | .45 | .50 | .55 | .60 | .65 | .70 | .75 | .80 | .85 | .90 | .95 | |
r | 0 | .932 | .698 | .478 | .321 | .210 | .133 | .082 | .049 | .028 | .015 | .008 | .004 | .002 | .001 | .000 | .000 | .000 | .000 | .000 | .000 |
1 | .066 | .257 | .372 | .396 | .367 | .311 | .247 | .185 | .131 | .087 | .055 | .032 | .017 | .008 | .004 | .001 | .000 | .000 | .000 | .000 | |
2 | .002 | .041 | .124 | .210 | .275 | .311 | .318 | .299 | .261 | .214 | .164 | .117 | .077 | .047 | .025 | .012 | .004 | .001 | .000 | .000 | |
3 | .000 | .004 | .023 | .062 | .115 | .173 | .227 | .268 | .290 | .292 | .273 | .239 | .194 | .144 | .097 | .058 | .029 | .011 | .003 | .000 | |
4 | .000 | .000 | .003 | .011 | .029 | .058 | .097 | .144 | .194 | .239 | .273 | .292 | .290 | ; 268 | .227 | .173 | .115 | .062 | .023 | .004 | |
5 | .000 | .000 | .000 | .001 | .004 | .012 | .025 | .047 | .077 | .117 | .164 | .214 | .261 | .299 | .318 | .311 | .275 | .210 | .124 | .041 | |
6 | .000 | .000 | .000 | .000 | .000 | .001 | .004 | .008 | .017 | .032 | .055 | .087 | .131 | .185 | .247 | .311 | .367 | .396 | .372 | .257 | |
7 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .001 | .002 | .004 | .008 | .015 | .028 | .049 | .082 | .133 | .210 | .321 | .478 | .698 |
n = 8
p | .01 | .05 | .10 | .15 | .20 | .25 | .30 | .35 | .40 | .45 | .50 | .55 | .60 | .65 | .70 | .75 | .80 | .85 | .90 | .95 | |
r | 0 | .923 | .663 | .430 | .272 | .168 | .100 | .058 | .032 | .017 | .008 | .004 | .002 | .001 | .000 | .000 | .000 | .000 | .000 | .000 | .000 |
1 | .075 | .279 | .383 | .385 | .336 | .267 | .198 | .137 | .090 | .055 | .031 | .016 | .008 | .003 | .001 | .000 | .000 | .000 | .000 | .000 | |
2 | .003 | .051 | .149 | .238 | .294 | .311 | .296 | .259 | .209 | .157 | .109 | .070 | .041 | .022 | .010 | .004 | .001 | .000 | .000 | .000 | |
3 | .000 | .005 | .033 | .084 | .147 | .208 | .254 | .279 | .279 | .257 | .219 | .172 | .124 | .081 | .047 | .023 | .009 | .003 | .000 | .000 | |
4 | .000 | .000 | .005 | : 018 | .046 | .087 | .136 | .188 | .232 | .263 | .273 | .263 | .232 | .188 | .136 | .087 | .046 | .018 | .005 | .000 | |
5 | .000 | .000 | .000 | .003 | .009 | .023 | .047 | .081 | .124 | .172 | .219 | .257 | .279 | .279 | .254 | .208 | .147 | .084 | .033 | .005 | |
6 | .000 | .000 | .000 | .000 | .001 | .004 | .010 | .022 | .041 | .070 | .109 | .157 | .209 | .259 | .296 | .311 | .294 | .238 | .149 | .051 | |
7 | .000 | .000 | .000 | .000 | .000 | .000 | .001 | .003 | .008 | .016 | .031 | .055 | .090 | .137 | .198 | .267 | .336 | .385 | .383 | .279 | |
8 | .000 | .000 | .000 | .000 | .000 | 000 | .000 | .000 | .001 | .002 | .004 | .008 | .017 | .032 | .058 | .100 | .168 | .272 | .430 | .663 |
n = 9